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LETTER TO THE EDITOR 

Lower-dimensional defect transitions in self-avoiding walks 
and percolation 

Hisao Nakanishi 
Baker Laboratory, Cornell University, Ithaca, New York 14853, USA 

Received 1 July 1981 

Abstract. We study self-avoiding walks and percolation on d-dimensional lattices, focusing 
on the existence of transitions associated with a defect of dimensionality d* < d. Such 
transitions are established for walks in all dimensions d 3 2, in contrast to percolation for 
which they are absent if d* = 1. An apparent contradiction with scaling arguments is 
resolved. A simple renormalisation group approximation yields phase diagrams consistent 
with these results and provides numerical estimates for crossover exponents and the 
splitting between ‘special’ and homogeneous critical points. 

The critical phenomena specifically associated with spatial inhomogeneities near a 
surface (or other extended defects) have been studied extensively for over a decade 
(Wolfram er a1 1971, Mills 1971, Lubensky and Rubin 1975). However, much recent 
activity has been stimulated by the scaling arguments of Bray and Moore (1977), who 
considered an n -component spin model, and (a) formulated a necessary condition for 
the existence of a distinct ‘surface phase’, i.e. a phase in which order exists locally 
without bulk ordering, as well as (b) proposed that all ‘surface’ critical exponents can be 
determined from the bulk exponents. In this note we address only the first question of 
whether or not a ‘surface’ transition occurs?. 

More specifically, we consider the single self-avoiding walk and the percolation 
problem. The former may be considered as a model of a solution of linear polymers in 
the dilute regime (de Gennes 1979 and references therein), while percolation may 
reasonably model the process of gelation (Stauffer 1979 and references therein). When 
a surface is introduced in these problems, it has a natural interpretation as a container 
wall, and a surface phase corresponds to an adsorbed polymer chain or gel adhering to 
the wall. These problems have been studied in recent years using renormalisation 
group (De’Bell 1979, 1980), series expansions (De’Bell and Essam 1980) and Monte 
Carlo (Clerc et a1 1981) techniques. However, all previous results have been consistent 
with the general condition proposed by Bray and Moore (1977), and no surprises have 
appeared. In contrast, we consider, following Bariev (1979) (see also Clerc et a1 1981), 
a d*-dimensional defect in an otherwise uniform, infinite system of d dimensions 
(d > d*).  In such a system, the analogue of the Bray-Moore criterion would be that the 
existence of a surface phase requires (d - d * ) v  S 1, where v is the exponent for the 
radius of gyration for self-avoiding walks or for the connectedness length in percolation, 
respectively. It will be seen below that d* = 1 is a particularly interesting case: such a 

‘r However, it now appears that (b) is inconsistent with E expansions (Reeve and Guttmann 1980, Diehl and 
Dietrich 1980), and series results (Barber et a1 1978). 
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system might be realised physically by immersing a fine thread or wire in a dilute 
polymer solution or in the sol phase of gelatin. A bilipid membrane permeable to 
polymers might provide an example of the case d* = 2. 

Consider first a walk on a hypercubic lattice of d dimensions. Let each link of the 
chain have a fugacity z in the homogeneous (or bulk) part of the lattice, but z* if it lies 
on the defect (of d* dimensions). For a pure, bulk walk, consider the generating 
function z d  = Zdzn,  where the summation Zd runs over all walks that start from a given 
site and n is the length of the walk. Then z d  corresponds to the susceptibility, x, of the 
n -component spin model in the limit n + 0 (de Gennes 1972), and thus the bulk critical 
point, zc, is determined by the radius of convergence of z d .  Analogously, in our case, 
we study the generating functions 

and 

that correspond to the surface susceptibilities x1 and xll  (Binder and Hohenberg 1972) 
of the spin model in the limit n + 0 (Barber et a1 1978). Thus the summation I runs over 
all walks starting from a given defect site, while m, n are the number of links in the walk 
lying in the bulk and defect, respectively. Likewise the summation I1 has the additional 
constraint that the end point must also lie on the defect. A divergence of Z *  and Z** at 
z < zc  corresponds physically to the formation of infinite walks adhering to the defect 
(with their lateral size probably finite). From arguments given below, Z* clearly has 
divergent singularities for real z and z* ,  and in this note, we assume that there are no 
other singularities of Z* closer to the origin; as a result, the critical line is the locus of the 
divergences of Z*. 

Thus we are interested in the critical line z* = z z  (2) in the unit square in the ( z ,  z*)  
plane. Two points on this line A, B (see figure 1) may be located trivially: if z = 0, both 
Z* and Z** reduce to the d*-dimensional homogeneous, bulk generating function Zd*, 
thus locating A at ( 0 , ~ ; ) ;  if z = z*, the bulk critical point is recovered, implying B at 
(zc, zc). There are two additional exact features: (i) the line z* = z t  ( z )  cannot have a 
(bounded) positive slope, and (ii) it cannot extend to the right of z = zc. (Thus a portion 
of the critical line is given by z = zc, z* < zc.)  The result (i) is due to the monotone 
increasing nature of Z* in z and z * ,  and (ii) is a direct consequence of the extension to 
general d of the theorem of Whittington (1975) which proves that the effective 
coordination number of a walk is the same for the walks in the full space as for those 
confined to a half space (homogeneous case). The only step required between this 
theorem and (ii) is that of realising that 2" contains a subset of walks confined to a half 
space lying wholly in the homogeneous region. 

We now demonstrate that z,* ( z )  lies below the point A for z := 0 (see figure 1). It 
suffices to consider simply a subset of walks contributing to Z** (and thus also to Z*)  
constructed as follows: first take each walk entirely on the defect contributing to &*, 
and allow for the possibility that each z* link can be replaced by a 'bridge' of bulk or 
homogeneous links (a minimum of three links are needed on a hypercubic lattice)?. 
Two successive 'bridges' can be accommodated by swinging them on either 'side' of the 
defect. Thus we obtain 

z** > Zd* w n  with w =z*+[2(d-d*)- l ]z3.  

t In this discussion, we consider a simple layer defect (hyperplane) of d* dimensions, although a similar 
argument should be possible for more general cases such as a defect of several such layers. 
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Figure 1. Schematic defect phase diagram for the self-avoiding walk problem. Points A and 
B correspond to the transition for bulk, homogeneous d*-  and d-dimensional lattices, 
respectively. In the shaded area marked 'surface phase', there are infinite walks adhering to 
the defect with no infinite walks far from the defect (in the bulk). 

Consequently, 2"" will diverge for w > z z  (0), and we have established the bound 

z : ( z )  s t f ( 0 ) - [ 2 ( d  - d * )  - 1 1 ~ ~ .  (3) 

This upper bound can clearly be improved by taking longer bridges, etc. The important 
point is that it shows the existence of defect transitions even f o r t *  < zg for all d > d" in 
the case of walks (see figure 1). In order to obtain the form of the critical line, we also 
need an upper bound on Z"". This is easy to do if d" = 1: first, let 2 be a generating 
function similar to 2"" but with the additional constraint that no defect link is allowed 
to be included in the walks. (Defect sites, however, are allowed.) Then, by allowing one 
factor of 2 to be inserted at every terminal of a sequence of n steps forming a linear 
chain on the defect, we may place an upper bound on a portion of the walks contributing 
to 2"". We say 'portion' since this prescription does not properly account for walks 
that double back across the defect. However, these can also be taken care of if we 
redefine 2 appropriately and inseri one factor of 2 between each link along the chain 
conformation. This refinement only enters 2 at O(z4), and so we have 

(4) 2 = 1 + 2(d - 1)z3 + 0 ( z 4 ) ,  

and thence 

Clearly 2 itself is finite for z < zc, and thus 2"" remains finite for z* < l/2. This 
implies z,* ( 2 )  2 l/2, and consequently the result for the vicinity of A is 

Z , * ( Z ) ~  1 - 2 ( d - i ) z 3  (d" = l , z  + 0). (6) 
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Let us now consider percolation. In this case the analogues of the surface 
susceptibilities XI,  x11 are the mean size of finite clusters S* and S** (De’Bell and 
Essam 1980), where S* is defined for clusters attached to a given defect site and S** is 
the mean size of the portions of such clusters that lie within the defect ‘layer’. In parallel 
to the previous discussion, the singularity of S* and S** defines a critical line p :  ( p )  
where p is the bond probability in the homogeneous, bulk region of the lattice while p *  
is that for the bonds in the defect. 

In this case, Clerc et a1 (1981) recently argued that there could be no defect-induced 
transitions for d* = 1, for any d. Their argument depends upon makingp* close to unity 
so that there are only isolated bonds missing in the defect. Thus, the probability that 
there are ‘bridges’ over these bonds is supposed independent, leading to the conclusion 
that connectivity could not extend to infinity. This conclusion is most plausible for small 
p .  However, for any p *  < 1, missing defect bonds may occur either singly or multiply 
(i.e. contiguously), but we may consider any multiple missing bonds as one unit, and 
consider the probabilities that the end points of these units are connected. As p + 0, 
these probabilities are dominated by p ”  where n is the length of the shortest path 
spanning the unit, and thus n 3 3. Moreover, since these paths do not have common 
bonds, the units are independent in this limit. Thus it follows that the connectivity 
cannot extend to infinity asymptotically for small p ,  for all p *  < 1. (The lack of rigour in 
these arguments lies in the failure to account for longer bridges that ‘jump over’ a 
number of sequences of missing defect bonds; but for p small, say p<pc/ lO,  such 
configurations should be negligible.) 

If d* > 1, we know that p :  < 1, and there is always a surface phase. In addition, the 
critical line p :  ( p )  satisfies an inequality 

This can be seen as follows: we can obtain a lower bound on connectivity by choosing to 
regard the two ends of a defect bond as connected only if either the defect bond itself is 
occupied or if there is a path through the bulk, homogeneous region of no more than 
three bonds. This restriction can only increase the value of p and p *  needed for 
percolation. Thus, the pair connectedness for defect sites are independent provided 
such pairs do not have a site in common. If there is a site in common, it is also clear that 
the probability that, say, two pairs are both connected, is not less than the product of the 
probabilities of each pair being connected. Thus, the ‘independence’ assumption 
always gives a lower bound on connectivity, and if 6 is the probability that a pair of 
neighbour sites are connected (according to the present criterion), we have infinitely 
extending connectivity whenever ti, > p : .  Since 6 = p *  + (1 -p*)[ l -  (1 -p3)2(d-d*)], 
we obtain (7). 

In order to put these results in a more general perspective, recall the arguments of 
Bray and Moore (1977). In a Ginzburg-Landau-Wilson Hamiltonian, they introduced 
a ‘surface’ (or defect) perturbation term 

n 

H,=$c ddxS(z) q ? ( x ) .  I i = l  

They showed that, under a scale change x + bx‘, the coupling c transforms as 

C (9) c f  = b d - l - ( l - a ) / u  - - b ( ’ - U ) / U  
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(the latter equality following by use of hyperscaling). From this they concluded that 
v > 1 implies that no surface phase exists, and that if there exists a surface phase then the 
crossover exponent is cp = 1 - v. Bariev (1979) considered a more general case of a 
d*(< d)-dimensional defect, where (7) is replaced by 

(10) c~ = b d * - ( l - m ) / u C  = b [ l - ( d - d * ) u 1 / v C ,  

Although Bariev was interested only in the case of marginality (where (d - d * ) v  = l), 
which leads to non-universal behaviour, we can equally well consider other cases. In 
particular, the logic of Bray and Moore (1977) would yield the statement: (d - d*)v > 1 
implies that no surface phase exists, but if there is a surface phase, cp = 1 - (d -d*)v.  

A z : r  

Figure 2. Schematic phase diagrams that may arise 
in the presence of defects in the self-avoiding walk 
and percolation problems. ( a )  Surface phase breaks 

surface phase exists (possible only if d* = 1 where z z  
or p r  = 1); ( c )  surface phase breaks off from the 

geneous point B by a drop A. 

off directly from the homogeneous point B; ( b )  no 

'special' critical point C separated from the homo- 

c /// 

/ 
ZC 

/ 
/ 

0 zc 2: 

i r )  

However, we can see that this conclusion is, in fact, inadequate. In terms of phase 
diagrams, this logic allows only for those of figure 2 ( a )  and ( b ) ,  where ( b )  would be 
obtained if (d -d*)v  > 1. In table 1, we list the estimates of (d -d*)v  for walks (Flory 
1971) and percolation (den Nijs 1979, Nakanishi and Stanley 1980, and references 
therein). Although percolation does not fall into the n -component spin hierarchy, a 
perturbation of the type given in (8) can still be considered as a model for a defect 
(Carton 1980). From this table, we note at once that, for walks with d* = 1, d > 2, the 
inequality (d -d*)v  > 1 is always valid even though we have just proved that surface 
phases exist. So, what should the phase diagrams look like in these cases? We note that 
the above argument deals only with the effect of the defect perturbation locally for 
strengths near c = 0. Thus, even if c is an irrelevant parameter as when (d  - d*)v  > 1, 
there is a possibility that a surface phase breaks off at a finite value of c as illustrated in 
figure 2(c) .  

Therefore, our results together with the scaling arguments predict, for walks, the 
phase diagram of figure 2 ( c )  if (d -d*)v > 1 and that of figure 2(a )  otherwise. For 
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Table 1. Numerical estimates of (d - d*)v for self-avoiding walks (upper) and percolation 
(lower). For walks, v = 0.75 (d = 2) and v = 0.6 (d = 3) are used (Flory 1971); in percola- 
tion, we use v = 2 (a conjecture due to den Nijs (1979)) for d = 2, and a table from Nakanishi 
and Stanley (1980) f o r d  >2. 

d d * = l  2 3 4 5 

2 0.75 
1.33 

3 1.2 0.6 
1.70 0.85 

4 1.5 1.0t 0.5 
1.92 1.28 0.64 

5 2.0 1.5 1.0f 0.5 
2.08 1.56 1.04 0.52 

6 2.5 2.0 1.5 1.0t 0.5 
2.5 2.0 1.5 1.ot 0.5 

t Case of a marginal operator similar to that discussed by Bariev (1979). 

percolation, the special case of d* = 1 yields the diagram of figure 2(b) with no surface 
phase, while for d * >  1, that of figure 2(c) is predicted if ( d - d * ) v > l  and ( a )  
otherwise. Thus we have shown that the criterion (d - d*)v G 1 is not a necessary 
condition for the existence of a surface phase, nor even necessary for the phase 
boundary to lie below point A (figure 1). Unfortunately, quite strictly, it is not a 
sufficient one either (Bray and Moore 1977). 

A remaining problem is to estimate numerically the threshold displacement A in 
figure 2(c) and the crossover exponent qo associated with point C. We have extended a 
cell renormalisation technique developed for homogeneous walks (de Queiroz and 
Chaves 1980, Family 1980,1981, Redner and Reynolds 1981) for the cases d = 2,3  and 
d* = 1,2.  This approach has the advantage of extreme simplicity and surprisingly good 
numerical accuracy compared with other more elaborate methods (Watts 1974, 1975, 
McKenzie 1976, Le Guillou and Zinn-Justin 1980 and references therein) that are 
believed to be more reliable. These latter methods, however, become either very 
complex or unreliable when applied to spatially inhomogeneous systems such as those 
with a defect or surface. In contrast, our approach retains its simplicity, and as seen 
below, yields phase boundaries in agreement with all the expected features discussed 
previously. 

In this renormalisation group, we seek to conserve Z *  (and Z**)  approximately by 
using two different types of cells. A ‘defect cell’ is used to renormalise z* (for that part 
of the walk lying along the defect) and a ‘bulk cell’ to renormalise z (for the remainder 
of the walk). The renormalised links z*’ and t’ are calculated by summing the weights 
of the subwalks within the cell that start from a corner site and span the cell along the 
direction in which the renormalised links are to lie (figure 3). (A similar method was 
used for percolation by De’Bell (1979, 1980).) In the particular example of the square 
lattice with 2 x 2 cells, this procedure yields the recursion relations 

z*’ = z*’ + 2 * ( z 3  + 2’) + t3, (11) 

Z’  = z ~ + ~ z ~ + z ’ .  (12) 
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z+ z z 2 

la1 ( 61 

Figure 3. ( a )  A cell used to renormalise z*;  ( b )  similarly for z .  Walks within the cell starting 
from the corner site (marked by a heavy dot) and spanning vertically are summed over to 
obtain recursion relations (11) and (12) (typical walks included in the summation are 
illustrated by bold lines). 

These generate discrete flows as usual and indicate a phase diagram of the type shown in 
figure 2(a)  in agreement with the previous discussion. The numerical results are: the 
homogeneous point B lies at ( z  = 0.47, z* = 0.47), with v = 0.72, and cp = 0.23. These 
values should be compared with the current ‘best’ estimates of B at (0.379, 0.379) 
(Watts 1975) with v = 0.75 and cp = 1 - v (= 0.25) (Watts 1974, McKenzie 1976), which 
agree with Flory (1971). 

It is trivial to extend this approach to other lattices and dimensions. One finds that 
the analogous treatment for the simple cubic lattice with a planar defect (d = 3, d* = 2) 
again yields a phase boundary of type figure 2(a). The numerical results for B are (0.30, 
0.30), v = 0.59, and cp = 0.47; the latter two values are not too far from the best 
accepted values v = 0.588, cp = 1 - v (Le Guillou and Zinn-Justin 1980). However, the 
interesting case is that of d = 3, d* = 1, and there we obtain a phase diagram of the type 
in figure 2(c) just as predicted in the previous discussion. This arises in the recursion 
relation by the motion of a fixed point that was below the line z* = z to a position above 
z* = z .  ‘i’he threshold displacement A (see figure 2(c)) is estimated to be about 0.08, or 
27 per cent of zc in this approximation; the crossover exponent at C is estimated to be 
Q = 0.065. 

De’Bell(l979,1980) applied a similar method to percolation with d = 2, d* = 1 and 
d = 3, d* = 2, where d = 2, d* = 1 resulted in a phase diagram of type figure 2(b). We 
find that the case d = 3, d” = 1 also yields a diagram similar to figure 2(b), thus agreeing 
with the expected results in these cases. 

In summary, we have shown that a naive interpretation of the local stability criterion 
with respect to the existence of a surface phase is misleading by giving explicit examples 
of self-avoiding walks in systems with a linear defect. In particular, the inequality 
(d - d * ) v  s 1 is neither a sufficient (Bray and Moore 1977) nor a necessary condition for 
the existence of a surface phase. We have corroborated the arguments by using a very 
simple renormalisation approach which agrees fully with the predictions, and which 
gives explicit numerical estimates for various quantities of interest. 

I am indebted to M E Fisher for valuable discussions and a critical reading of the 
manuscript. I am also grateful for helpful discussions with F Family, P G de Gennes, S 
Redner and H E Stanley. E Guyon and D Stauffer are thanked for the communication 
of their related work. The support of the National Science Foundation through the 
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